Deterministic Matrices Matching the Compressed Sensing Phase Transitions of Gaussian Random Matrices

By Monajemi Hatef, Jafarpour Sina, Gavish Matan, and Donoho David
Proceedings of the National Academy of Sciences (2013)

  • Hatef Monajemi

    Stanford University

    USA

  • David Donoho

    Stanford University

    USA

Created

November 5, 2013

Last update

November 5, 2013

Software

R

Ranking

42

Visits

3513

Downloads

282

Description

This code generates the figures in the paper "Deterministic Matrices Matching the Compressed Sensing Phase Transitions of Gaussian Random Matrices" by H. Monajemi, S. Jafarpour, Stat330/CME362 Collaboration, M. Gavish, and D. L. Donoho

A Simple Test for Zero Multiple CorrelationCoefficient in High-Dimensional Normal Data UsingRandom Projection

Working Paper (2019)

Najarzadeh Dariush

Specification tests in semiparametric transformation models - a multiplier bootstrap approach

Working Paper (2019)

Kloodt Nick and Neumeyer Natalie

Quantifying the risk of heat waves using extreme value theory and spatio-temporal functional data

Computational Statistics and Data Analysis (2018)

French Joshua

Simultaneous estimation of quantile regression functions using B-splines and total variation penalty

Computational Statistics and Data Analysis (2017)

Jhong Jae-Hwan and Koo Ja-Yong

Mode jumping MCMC for Bayesian variable selection in GLMM

Computational Statistics and Data Analysis (2018)

Storvik Geir and Hubin Aliaksandr

Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall

Journal of Banking and Finance (2018)

Kratz Marie, Lok Yen H., and McNeil Alexander J.

Optimal Experimental Design for Predator-Prey Functional Response Experiments

Working Paper (2017)

Zhang Jeff, Drovandi Christopher, Kypraios Theodore, and Papanikolaou Nikos

2017-08-08

Zip Archive

1K

162

29

Accelerating Pseudo-Marginal MCMC using Gaussian Processes

Working Paper (2017)

Drovandi Christopher, Boys Richard, and Moores Matthew

A hyperplanes intersection simulated annealing algorithm for maximum score estimation

SSRN (2017)

FLorios Kostas

0 comment

Add comment

You need to log in to post a comment.